Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2 through Its C2 Domain
نویسندگان
چکیده
Ubiquitination of proteins is an abundant modification that controls numerous cellular processes. Many Ubiquitin (Ub) protein ligases (E3s) target both their substrates and themselves for degradation. However, the mechanisms regulating their catalytic activity are largely unknown. The C2-WW-HECT-domain E3 Smurf2 downregulates transforming growth factor-beta (TGF-beta) signaling by targeting itself, the adaptor protein Smad7, and TGF-beta receptor kinases for degradation. Here, we demonstrate that an intramolecular interaction between the C2 and HECT domains inhibits Smurf2 activity, stabilizes Smurf2 levels in cells, and similarly inhibits certain other C2-WW-HECT-domain E3s. Using NMR analysis the C2 domain was shown to bind in the vicinity of the catalytic cysteine, where it interferes with Ub thioester formation. The HECT-binding domain of Smad7, which activates Smurf2, antagonizes this inhibitory interaction. Thus, interactions between C2 and HECT domains autoinhibit a subset of HECT-type E3s to protect them and their substrates from futile degradation in cells.
منابع مشابه
The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function
Nedd8 is a ubiquitin-like protein that controls vital biological events through conjugation to target proteins. We previously identified the HECT-type ubiquitin ligase Smurf1 which controls diverse cellular processes is activated by Nedd8 through covalent neddylation. However, the effect of non-covalent binding to Nedd8 remains unknown. In this study, we demonstrate that both Smurf1 and its hom...
متن کاملDifferential Domain Architecture Directs Nedd4 Family E3 Ligase Function
Nedd4-family E3 ubiquitin ligases regulate signaling in intracellular pathways that control cancer, blood pressure, iron metabolism, and inflammation. These E3 ligases are catalytically active, and share a highly conserved, modular architecture. How Nedd4 family members are differentially regulated, despite their high degree of homology, is unclear. A regulatory mechanism that maintains an inac...
متن کاملPeptide and small molecule inhibitors of HECT-type ubiquitin ligases.
The human genome encodes several hundred E3 ubiquitin ligases containing RING domains, and around 28 containing HECT domains. These enzymes catalyze the transfer of ubiquitin from E2 enzyme thioesters to a huge range of substrates and play crucial roles in many cellular functions. This makes them attractive potential therapeutic targets. However, they have proven difficult to inhibit: very few ...
متن کاملMechanism of catalysis, E2 recognition, and autoinhibition for the IpaH family of bacterial E3 ubiquitin ligases.
IpaH enzymes are secreted bacterial effectors that function within host cells as E3 ubiquitin (Ub) ligases. Catalytic activity is imparted by a conserved novel E3 ligase (NEL) domain that is unique to Gram-negative pathogens and whose activity is repressed by a flanking substrate-binding leucine-rich repeat (LRR) domain when substrate is absent. How the NEL domain catalyzes the conjugation of U...
متن کاملThe interaction of mPar3 with the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity.
The Par polarity complex consisting of the evolutionarily conserved proteins mPar3, mPar6, and aPKC regulates cell polarity in many cell types including neurons. Here we show that mPar3 is required for the establishment of neuronal polarity and links the Smurf2 to Kinesin-2. The HECT domain E3 ubiquitin ligase Smurf2 ensures that neurons extend only a single axon by initiating the degradation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 130 شماره
صفحات -
تاریخ انتشار 2007